Budgets and the Extent of Noncampliance

The menitoring probability just defined, if faced by everycne of N
identical sources, would provide an incentive for every source to choose to
camply. But actual measurement would find the fraction me in violation in
every pericd. Expanding the cobserved fraction by the sample fraction implies,
not swrprisingly, thataxIOOpercamofthesamcswuldbeé@ectedm
appear cut of campliance if all scurces were monitored in a given pericd.

The dollars spent cn monitoring the fraction m of the socurces would be
NmM. Expressing this as a fraction of the cost of camplete menitoring gives

us: = NmM

m=_—=.

But suppose, as seems reascnable, that the available budget for
monitoring would not support this much effort. How are the attainable
fraction of sources in compliance ard the budget required for that attairment
related? _

First, observethattbeagencycarmatéroceedinasibsatimoflhited
budget (r < m) to armounce a monitoring probability r applying to all sources,
for then nocne would have an incentive to camply. Rather it must armounce that
the probability m applies to a suitably chosen subsect N, su:b.thatzﬁz%'rl_!_=r,

the available budget. 4 'Ibat:.sN ,N-r Then the expected fraction of
sarrcascutofccmplmmapenodcznbemferredmtwoparts
~ those sources that do not expect to be monitored
~ those sources that are monitored ard are expected to be fourxd cut of
campliance.
Dencting the expected fraction of sources in viclation as ¢, we obtain:
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Thus, if r is fixed, this ¢ is the smallest fraction of scurces that can be
expectaed to be in vioclatieon.

On the other hand, it may be of imterest to determine what budget would
be required to produce an expected violation fraction equal to scme €. This
is given by: L. ., (i-€

(1~
: P ar . T
for 1 > >@ > 0.° Note for future reference that 3e = <0
That is, the required budget declines as the requirement on the fraction of
sources in violation is relaxed.’ Illustrative values of required budgets

implied by assumed f,c and 8, are provided in table 2.

Externding The Game To Repeated Pericds Or Plays

In the agency-source game described above, the agency takes no account in
its future plans of the discovered behavier of any scurce. Violators are
f£ined, but that is the erd of it. Ancther way of saying the same thing is
that the only penalty for a discovered violation is a cne~period fine, F. In
the tax-compliance literatire, models have been developed that make use of
information on past behaviecr (as discovered by monitoring, of course) in
defining either the future probability of monitoring or the future fine for a
discovered viclation or both. For example, Landsberger ard Meijison 1982
allow both fine ard probability to vary within a two state model, while
Greenberg 1984 varies the monitoring probability only, but uses a three-state
medel.



Table 2: Budget Fractions Required To
Cbtain Chosen Campliance Ievels

Allowed fraction Relative Type I Required
not camplying fine error (Single play)
(=) (£ () budget
(rsp)
0.2 1.2 0.05 .493
0.2 3.2 0.05 263
c.1 1.2 0.05 .554
0.1 3.2 0.05 .296
0.2 1.2 0.01 .372
0.2 3.2 c.01 .196
0.1 1.2 0.01L .418
0.1 3.2 0.01 .220
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These approaches to the construction of monitoring and enforcement
systems have attracted attention because they appear to allow the attaimment
of given levels of campliance with the requlations in question using lower
levels of sperding by the authorities. Systems closely akin to repeated games
with grouping of regulatees are fowrd in practice as well. For example, the
U.S. Intermal Reverue Service is widely believed to use data from past audits
to define the probability of a cuxrrent year audit. And new regulations aimed
at controlling growrd water pollution (Fortuma and Lemmnett 1987) effectively
group landfill coperations for current monitoring purposes an the basis of past
detection of problems.

A repeated monitoring game may conveniently be thought of as a markov
process in which the states are groups among which the regulated parties move
according to the results of particular plays of the embedded game. The
probabilities of transition deperd on the frequency with which the requlated
parties are monitored when in each group. Discovery of a violation when in one
group results in reassigmment of the party to ancther group with different
monitoring probability. In Greenberg's systems there are three groups. Being
caught in violation while in group 1 results in reassigmment to group 2 ard a
subsequent violation in group 2 would result in reassigmment in perpetuity to
group 3, in which auditing is constant (every year for an incame tax system) and
perpetual. A party monitored and found in campliance in group 2, however, is
retizried to group 1. Greenberg shows that in the absence of errors in the audit,
ard when the parties do not discount futire costs, all parties in group 2 will
comply ard no party will ever be assigned to group 3. Monitoring probabilities
in the first two groups can be small fractions of the levels necessary to
stimilate cgmpliance in a single play game situation. All parties in group 1
will find it cptimal to violate because of their second chance in group 2.
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There are several ways to interpret such systems. If one views the
regulated parties as generally attempting to camply, growping is simply a way
of cancentrating rescurces an those least capable of successfully doing so.
An altermnative, where campliance choice is taken to be an open question, is to
see the variation of monitoring probability on the basis of past record as an
integration of the two elements of the expected cost of noncampliance — size
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enforcement approaches irmvolving higher fines for repeated offenses.

Cne may also interpret such extensions of single-play enforcement games
as involving the added element of threat: If you don't do as I say you
should, I will undertake a course of action neither of us really wants —
checking up cn you so frequently for such a long time that you will face a
campliance 'hell" and I will have to sperd a cansiderable sum on your
campliance alane. Behave in a reascnable fashion ard I will offer occasional
ocpportunities to relax. In the repeated game approach of Greenbery, for
example, a "reascnable fashicn® is implicitly defined as never failing two
audits in a row. The model develcped here extends Greenberyg's three-state
approach, and involves a different definition of the monitoring probabilities
and the imtroduction of errors of inference.

Consider first, however, a simple versicn of the repeated play model
without errcr. In what follows it is possible to relax the assumption that
all sources are identical without adding to the expositional difficulty. When
this is done, it will be convenient to define p as a momitoring probability
lower than the smallest value of m;, defined as above far each of the i

1
sources (my = (I+E) (-5 )= a%_))
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Assume for a moment that Greenberg's results hold, so that every source
in group 2 has the incentive to camply. But none in growp 1 do. Then group
3 remains empty if no sowrce is assigned to it in the begimming, and the
transition probability to group 3 from group 2 is zero. Define the monitoring
probability in group 2 to be ¢ for every souwrce. ILet the menitoring
probability group 1 be expressed as a function of € and 6: 2(,0 ). In these
citumsta:nstherepea?edplayganeprcdacsmvem:ﬂofmmggmxps
1 ard 2 that is captured by a simple markov process with the following

transition matrix (where G; stards for group i) :6

G Gy
Gy 1-z2{<c,p) 2(e,pn)
Go o 1-p

It is easy to solve for the stationary probabilities I, and L, which
can be imtrepreted as the fractians of sources in the two graups in the long

run: ' I = P
L e+ 2(c,p)
I, = Z(E ,0)
2 "o+ 2(e,n)

The reascn for expressing 2z as a function of cardp is that I,, mst
equal €, where € is the required upper limit on the noncompliance fraction.

Tus: e o o
5 2( e, 9)

arz(s,p) =0( L -1)
-4

‘foguaranteezél,’ we must have p<l—€_e—7buttoguara.nteez<msothatin
fact the incemtive is not to comply in group 1, it is necessary that
p<m(ri—s-9, an cbvicusly stricter requirement. If € =1, 1 < =1, the

i3



c(o(Z-1)+(L-c)p=2p=c)
This is also the ndget fraction as defined above for the single play game.
That is: ———(——L——N.2131]&"g i G 20(l=g) = r.

what, then, is the relation between the budget fractions required in
single play ard multiple play games in the absence of error? Above, the
errcrless single-play budget fraction, Tepr
5). Calling the multiple~play budget fraction T it is seen that:

was fournd to be (1-¢ )m (footnicte

r = 3=8m _.m
“zf;- (=925 20

Therefare, the budget required to produce a campliance fraction at least (1-€)

m

will be smaller for the miltiple play game as leangas m > 25 or o< 3 (Thus,
p< min(r—;-,l%) is a rule guaranteeing both sensible transition probabilities
a:ﬁ.budgetsavingsfrmgoingtothemltipleplaygame. If ¢ =1/3, the two
arguments for min ( ) are equal, and for € < 1/3. the requirement that

p<me /(1<) govemns. Therefare, in situations with small allowed fraction

of sarces in viclation, the ratic r§ will be greatsr than ar equal to

1/2(3'-;—5), indeperdently of the cther parametsrs, such as fine size.

Introducing Errers Of Inference Into The Repeated Game

If the monitoring instruments available to the agency are not perfect but
display randam error (or if the parties camnot camtrol their own actions
perfectly but may randemly violate requlations in spite of intending not to)
there will again be probabilities both of missing actual attempts to evade the
régulaticns ard of incorrectly identifying violations by sources in or
attempting to be in campliance. The major implication of this change in
assumptions will be that group 3 can no longer be assumed to be empty even if
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the incentive to camply exists in group 2. Indeed, group 3 will be an
absorbing state if it is treated as a perpetual punishment for those caught in
violation in group 2. Eventually, becuase of false positives, all parties
would be in growp 3, ard the budget requirement would be 1 if all sources in
group 3 are audited every period.

The major alteration to the repeated game structure required to
accamcdate these errors of inference is the introduction of scme possibility
of escape fram group 3. But to link escape to successful passing of a
monitoring visit, while perhaps initially tempting, is dangercus. Consider,
for example, a design in which a party in group 3 is monitored each period.
If success in a monitoring visit led to release back to group 2, the release
Probability would be 1 -¢ , where ¢ is the probability of falsely idemtifying
a violation when campliance is ccowring. The average time spent in group 3 by
a party would be 1/(1 ~-a ). It will be shown below that for reascnable values
of the cother parameters, the escape probebility must be mxch less than 1 -G .

Rather, the probability of escape should be tailored to induce campliance
in growp 2, given the errcr structwre and the size of the fine levied for
discovered viclations. Therefore, we write the transition matrix for a

repeated game, with three groups and audit errors as:

Gy G2 Gs
G 1-z(.(L -8) 2(.)(T~8) o©
Gy (1l -=) 1-o0 pe
Gq 0 E 1-E

where, as before, ¢ is fixed arbitrarily within an upper limit, and z(.) will
be chosen to maintain L=e, the fraction of socurces in viclation, and will ke

a function of E,o0q,8 as well as e« Inwhat follows, °is taken to equal m/k,
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with k an arbitrary constant. ¢ is the probability of a false positive and 8
the probability of a false negative, as above.

In this setting it is tediocus but straightforward to derive the following
results:

(i) z(.) - EO(I-G)(l-e)

€ (1-8) (E4pa) in order that Hl = g

(ii) Th;n, I = -E;(-i.:e—). and

2 E+ pa
1 = 20(-e)
3 E+ pa

243 E(l-e)o ao (l-e)A
111 =
( ) = £z + 5 + . 3

Where A5 is the monitoring probability in group 3 and can be as low as is
consistent with giving each source in that growp the incentive to camply in
every pericd. The results reported below generally involve assuming that
A3 =1

iv) since = =< Ep{l=a =€

(1v) z =bag%%:%7L%%;;ﬁr-and,a 2 sTI%é%?Eggé;j__l.

3£ <0, for r can be written as (1~ ) (K], where K> 0 for

ax ’
meaningful values of ¢, 8, E, ¢, and Ay, anxd 3¢ =0

It is possible to derive an upper limit for E, call it Ep, that assures a
socurce will have the incentive to camply in group 2. This derivation may be
motivated by displaying the decision tree facing a source in group 2:
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In this situation, the expected cost of campliance is:
E(compliance) = o [(1~-c )C + (C+F)+2 (;“'E.E&_, T+ )C;
While the a:per:'ted cost of violation is: E(viclation) = ,(1-8 )[(C+F)+ %

Requiring that E({campliance) < E (vioclation) implies that:

o (1+£a) (1-—a)
Er <18 (Fa-(1-8) (O+E))

“e

Consistent values of p ,£,2, 8, and € are used in table 3 to derive
values of E;. It may seem counter intuitive that as fines grow relative to
avoidable costs of campliance, the upper limit on Ey falls (the time spent in
grauwp 3 grows). This cccurs because as fines are increased, m ard hence,f ,
the monitoring probability for group 2 both fall. This reduces the chance of
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TABLE 3:

CHARACTERISTICS OF THE REPEATED-PLAY MONITORING GAME,
INCLUDING RELATIVE BUDGET SIZE, AS FUNCTIONS OF BASIC PARAMETERS

Escape Size of Size of Multiple Single Budget
Required fraction Relative Type 1 Type II K m probability group 2 group 3 Play Play ratio
in non-compliance fine error error (p=~E) from group 3 budget  budget

(e= 1) (£) (o) (8) (E) m) @) () (e (rg /e

0.2 1.2 0.05 0.2 40 0.012 0.754 0.044 0.071 0.493 6.96

0.2 3.2 0.05 0.2 40 0.007 0.757 0.043 0.062 0.263 4.21

0.1 1.2 0.05 0.2 40 0.019 0.849 0.050 0.080 0.554 6.91

0.1 3.2 0.05 0.2 40 0.007 0.851 0.049 0.071 0.296 4.18

0.2 1.2 0.01 0.01 40 0.012 0.797 0.008 0.024 0.372 15.8

0.2. 3.2 0.01 0.01 40 0.006 0.794 0.008 0.018 0.196 1.1

0.1 1.2 0.01 0.01 40 0.012 0.890 0.008 0.026 0.418 15.8

0.1 3.2 0.01 0.01 40 0.006 0.892 0.008 0.019 0.220 11.6

0.2 1.2 0.05. 0.2 200 0.002 0.753 0.047 0.052 0.493 9.48

0.2 3.2 0.05 0.2 200 0.001 0.759 0.043 0.046 0.263 5.72
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getting imto group 3 at all, an effect that is balanced by the extension of
expected time there. This demonstrates the cemntxral place in this system of
the threat of residence in group 3 ard the subsidiary role of the size of the
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It is possible to substitute E; into the expression for the budget, r,
and thus to cbtain an expression for the budget in terms of the underlying
parameters, cansisternt with the requirements (i) that the proportion of
violators be kept to =; and (ii) that parties in group 2 have an incentive to
camply. Unfortunately, the resulting expression is rather messy and does not
bear any simple relation to the budget expressicn for the single play versicn

of the game with error. 'm'mswe<::1:nt:a:i.nforrmp (with error):

o (1+fa) (l-S—a‘)\

T (with y = (1=edol lo/m ] (2-a—8)+a(l-8)]
(e (1+£fc) (1-8—a) r0a) (1-8)
1-0/m
= {l==)o[Er(2-0-8)+a(l-8)]
(Ertpa) (1-8)

where monitoring in group 3 is taken to be certain; A5 = 1 in earlier
notaticn.

To provide same feel for the kudgetry advantage of using the threat
implicit in the miltiple-play ard grouping approach to the enforcement game,
however, table 3 also shows budget values for two different allowed
proportions of violators, two levels of fines in relation to avoidable
campliance costs, and two sets of exror probabilities. The ratio of single~
play to multiple-play budgets, parameter choices equal, is a measure of the
improvement bought by introducing record-dependent monitoring probabilities.
Note that with small errcrs, the ratio is over 15 to 1. Or, said ancther way,
for this range of parameter choices, the budget required for a miltiple-play
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scheme would be between 6 ard 25 percent of a single-play approach designed to

achieve the same campliance results.

Several other chservations about table 3 are in &rder:

As expected, cet. par. the required budget is lower when the allowed
fraction of parties in violation is higher.

But notice that the ratio of the single play to multiple-play budgets
appears to be indeperdent of the allowed fraction in vioclation. In
fact, the small differences found in table 3 reflect rourding errors,
for it is straightforward to show that in the ratio, all temms
involving € cancel.

When the error structure is improved (bothe and £ reduced) budget
requirements are reduced, cother specifications remaining the same.
A given increase in the size of the fine relative to avoidable cost
has a larger effect on required budget in the single-play mcdel than
it does in the repeated game. This difference is more pronounced the
less favorable the exrror stxucture.

Budget size is affected by choice of the arbitrary constant, K, used
to translate m (the campliance-inducing menitoring probability) imto
(the monitoring probability actually applied to group 2). It appears
that simply by choosing K larger and larger (monitoring less ard less
in group 2) the budget can be driven closer and closer to zero. But
this is an illusion created by the small range covered in the table.
In fact, as K goes to infinity, the stationary probabilities I
(fraction of sources in group 2) aad I, (fraction of sources in

graup 3) can be approximated by:
= l-¢
I2% 712
a(l-c)

113= I+ a
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